
State Delta Resolution Algorithm

Erik Johnston

April 2018

1 Definitions

We first define some basic functions that correspond to the synapse code.

Let K be the set of all type/state key tuples and E the set of all events. We
can then define arbitrary functions:

f : F → E

g : G→ E
(1)

which we call state maps, for F,G ⊂ K.

State maps have the additional properties that they are injective and that
∀ state maps f, g then f(x) = g(y) ⇒ x = y (i.e. a given event can only be
mapped to from a single state key).

We can compute the set of all “unconflicted state keys”:

Uf,g = {x | ∀x ∈ F ∩G, f(x) = g(x)} ∪ (F 4G) (2)

i.e. the set of state keys where f and g don’t conflict. Similarly, we define:

uf,g : Uf,g −→ E

x 7−→

{
f(x), if x ∈ F
g(x), otherwise

(3)

which gets the unconflicted event for a given state key.

We can also define a function on Cf,g = (F ∪G) \ Uf,g:

cf,g : Cf,g → E (4)

which is used to resolve conflicts between f and g. Note that cf,g(x) is either
f(x) or g(x).

1

Now we define:

rf,g : F ∪G −→ E

x 7−→

{
uf,g(x), if x ∈ Uf,g
cf,g(x), otherwise

(5)

which we call the resolved state of f and g.

Note that this definition immediately implies that ∀x ∈ Uf,g s.t. g(x) = g′(x)
then rf,g(x) = rf,g′(x).

We define
α : E → P(K) (6)

to be the mapping of an event to the type/state keys needed to auth the event,
and

αf,g(x) = (αf(x)) ∪ (αg(x)) (7)

which is the set of auth events required for f(x) and g(x). Note that αf,g(x) ⊂
F ∪G.

Further, we can define

ρf,g(x) =

∞⋃
n=0

(αf,g)
n(x) (8)

to be the auth chain of f(x) and g(x). This is well defined as there are a finite
number of elements in F ∪G and ρf,g → F ∪G.

For examples of what α and ρ look like, see the appendix.

2

2 Results

If we consider the implementation of cf,g in Synapse we can see that it depends
not only on f and g, but also on the resolved state of their auth events, i.e.
rf,gαf,g.

We can formalise this idea by defining the notion of dependency relations,
which we do in the appendix. Using that notation, we can say that:

cf,g ∝ {f, g, rf,gαf,g}

which leads to the following results.:

Lemma 1. rf,g ∝ {fρf,g, gρf,g}

Proof. First:

rf,gαf,g(x) = (uf,gαf,g(x)) ∪ (cf,gαf,g(x))

1but by definition uf,gαf,g(x) ∝ αf,g(x), therefore:

rf,gαf,g ∝ {fαf,g, gαf,g, cf,gαf,g}

so by induction, starting from cf,g ∝ {f, g, rf,gαf,g}:

rf,g ∝ {f(αf,g)
i | ∀i ≥ 0} ∪ {g(αf,g)

i | ∀i ≥ 0}

and the result follows since f(αf,g)
i ∝ fρf,g

By inspecting the actual implementation of α we can define ρ−1f,g(x) to be a

function which ∀y ∈ ρf,g(x) then x ∈ ρ−1f,g(y). We can similarly define α−1f,g(x).

Note that ∀x, x ∈ ρ−1f,g(x)

We now consider g′ : G′ → E, where g(x) = g′(x) except for x ∈ Gδ, i.e. g′

is a state map based on g.

Lemma 2. For f, g, g′ s.t. ∀x /∈ Gδ, g(x) = g′(x), then ∀x /∈ ρ−1f,g′(Gδ), rf,g(x) =
rf,g′(x).

1Note that e.g. uf,gαf,g(x) is shorthand for {uf,g(y) | ∀y ∈ αf,g(x)∩Uf,g}, i.e. we apply
the function to the values in the given set that are also in the functions domain.

3

Proof. Let x be s.t. rf,g(x) 6= rf,g′(x):

⇒ fρf,g(x) 6= fρf,g′(x) or gρf,g(x) 6= g′ρf,g′(x)

⇒ ∃y ∈ ρf,g′(x) s.t. g(y) 6= g′(y)

⇒ y ∈ Gδ
∴ ρ−1f,g′(y) ⊆ ρ−1f,g′(Gδ)

⇒ x ∈ ρ−1f,g′(Gδ)

Corollary 3. For f, g, g′ s.t. ∀x /∈ Gδ, g(x) = g′(x), then ∀x /∈ Cf,g∩ρ−1f,g′(Gδ),
rf,g(x) = rf,g′(x)

Proof. This follows from the previous result and that if x ∈ Uf,g \ Gδ then
rf,g(x) = rf,g′(x).

This allows us to reuse most of the results of rf,g when calculating rf,g′ if
Gδ is small. In particular we can calculate the delta between the two functions
without having to inspect Uf,g, which dramatically cuts down the amount of
data used to compute deltas of resolved state of large state maps.

However, we can do better than this. We can note that rf,g(x) only depends
on rf,gαf,g(x) for values of αf,g(x) not in Uf,g. Concretely, this means for
example that if Gδ includes the membership of the sender of a power level
event, but the power level event is in Uf,g, then we don’t need to recalculate
all conflicted events—despite the membership event being in every event’s auth
chain.

Lemma 4. ∀x s.t. rf,g(x) 6= rf,g′(x) then ∃y1, ..., yn s.t. yn ∈ Gδ, yi /∈ Uf,g
and yi+1 ∈ αf,g′(yi)

Proof. If rf,g(x) 6= rf,g′(x) then ∃y ∈ Gδ s.t. y ∈ ρf,g′(x). By definition of
ρf,g′(x), ∃y0, ..., yn s.t. y0 = x and yi+1 ∈ αf,g′(yi).

We know that rf,g′(x) depends on either uf,g′(x) or cf,g′(x), but if x ∈
Uf,g′ then there is no dependency on x’s auth events and so yn = y0 = x ∈
Gδ. Otherwise, we have cf,g(x) 6= cf,g′(x), which depends on f(x), g′(x) or
rf,g′(αf,g′(x)). If x /∈ Gδ then we know f(x) and g′(x) are the same, and so
rf,g(αf,g′(x)) 6= rf,g′(αf,g′(x))⇒ ∃y1 ∈ αf,g′(x) s.t. rf,g(y1) 6= rf,g′(y1).

Applying the above to y1 then if y1 ∈ Uf,g′ ⇒ y1 = yn ∈ Gδ. By induction
yi /∈ Uf,g′ for i < n.

(Note that we can assume yi /∈ Gδ as otherwise we would pick n = i, and so
if yi /∈ Uf,g ⇔ yi /∈ Uf,g′)

4

We can use this approach and create an iterative algorithm for computing the
set of state keys that need to be recalculated:

Algorithm 1 Calculate state keys needing to be recalculated

to recalculate← empty set of state keys
pending ← Gδ
while pending is not empty do
x← pop from pending
if x /∈ Uf,g and x /∈ to recalculate then

add all in α−1f,g′(x) to pending
add x to to recalculate

end if
end while
return to recalculate

It should be noted that this only gives the set of keys that need to be
recalculated, and not the full set that would be needed to actually recalculate
them. The full set needs to include the auth events for each key, i.e.:

T ∪
⋃
x∈T

αf,g(x)

where T is the set to reacalculate.

5

Appendices

A Dependency Relations

If we have functions af , bf , etc we can define a notion of dependency. We say
that af “depends only on” bf , which is written as af ∝ bf , if

∀x, g s.t. af (x) 6= ag(x) =⇒ bf (x) 6= bg(x)

This relation is transitive, i.e. if af ∝ bf ∝ cf then af ∝ cf as:

∀x, g s.t. af (x) 6= ag(x)

=⇒ bf (x) 6= bg(x)

=⇒ cf (x) 6= cg(x)

Most functions depend on more than one other function, so we introduce the
notation af ∝ {bf , cf} (af depends on the set of functions {bf , cf}) to mean

∀x, g s.t. af (x) 6= ag(x)

=⇒ either bf (x) 6= bg(x),

or cf (x) 6= cg(x)

6

B Auth Functions

The following is the implementation of α in Synapse:

Listing 1: Definition of α

def au th type s f o r e v en t (event) :
i f event . type == EventTypes . Create :

return []

auth types = []

auth types . append ((EventTypes . PowerLevels , ”” ,))
auth types . append ((EventTypes .Member , event . u s e r i d ,))
auth types . append ((EventTypes . Create , ”” ,))

i f event . type == EventTypes .Member :
membership = event . content [”membership”]
i f membership in [Membership . JOIN , Membership . INVITE] :

auth types . append ((EventTypes . JoinRules , ”” ,))

auth types . append ((EventTypes .Member , event . s ta t e key ,))

i f membership == Membership . INVITE :
i f ” t h i r d p a r t y i n v i t e ” in event . content :

key = (
EventTypes . ThirdPartyInvite ,
event . content [” t h i r d p a r t y i n v i t e ”] [” s igned ”] [” token”]

)
auth types . append (key)

return auth types

In particular the auth types are the same for all events except member-
ship events. This means that αf,g(x) is always the set { (“m.room.create”, “”),
(“m.room.power levels”, “”), (“m.room.member”, sender) } for non member-
ship events.

If we have a room created by user u1 (so the power levels, join rules etc. were
all sent by them) and a state event sent by u2, then the auth chain of that event
(with state key x) is ρf,g(x) = {x, (“m.room.create”, “”), (“m.room.power levels”, “”),
(“m.room.join rules”, “”), (“m.room.member”, u1), (“m.room.member”, u2) }.

This gives a valid, though imperfect, possible definition of ρ−1f,g where ρ−1f,g(x) =
{x} for all state tuples that aren’t create/power levels/membership/etc., and
ρ−1f,g(x) = F ∪ G for those keys. This trivially satisfies the property that

∀y ∈ ρf,g(x) then x ∈ ρ−1f,g(y)

7

